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PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. Consider the following game G.

Player 2
L C R
U|6,3]30]0,1
Player 1 M | 5,4 | 1,7 | 4,3
D[2,5]57]0,0

(a) Solve the game by iterated elimination of strictly dominated strategies. If you get a
unique solution, indicate this. If your solution is not unique, write up the reduced
game where you have eliminated the strictly dominated strategies.

(b) Find all the pure and mixed-strategy Nash Equilibria.!

(c¢) It has been argued that randomization in decision making lacks ‘behavioral support’.
Give one (and just one) example of a different interpretation of mixed strategies, that
does not rely on players actually randomizing.

(d) Suppose we repeat the game twice. Let the new game be denoted G(2). Find a
Subgame-perfect Nash Equilibrium of G(2) and write it up formally. (Any equilibrium
will do, you do NOT have to find all equilibria.)

2. Two tech entrepreneurs have made 1 dollar from selling a new app and need to decide how
to allocate the gains. If no agreement is reached, neither entrepreneur gets anything. Let
x1 and x9 be the amounts that entrepreneur 1 and 2 get in the negotiation. Their utilities
are:

ul(xl) = 4$1

UQ(IL‘Q) = 2\/1'72.

(a) Can the axioms Pareto efficiency (PAR), Symmetry (SYM) and Invariance to equiv-
alent payoff representations (INV) be used to conclude that the Nash Bargaining
Solution must satisfy v} = v57 Explain briefly.

(b) Find the Nash Bargaining Solution. What are the allocations?

(c) Now, suppose the entrepreneurs have signed a contract before they started the ven-
ture, guaranteeing that in case of disagreement, entrepreneur 1 gets to keep 0.5 dollar
whereas entrepreneur 2 gets nothing. Find the Nash Bargaining Solution. What are
the allocations?

(d) Compare the answers in (b) and (c). If the allocations are the same, explain why this
is the case. If they are different, explain why this is the case.

!For the mixed-strategy equilibria, you can assume that player 1 plays U with probability p1, M with proba-
bility p2 and D with probability 1 — p1 — p2. Similarly, assume that player 2 plays L with probability ¢1, C with
probability g2 and R with probability 1 — ¢1 — go.



3. Consider the entry game represented in Figure 1, in which the incumbent can be weak
(i = w) or strong (i = s). Here, the incumbent does not know his own type, but the
outsider does.? You can think of this as a probability # that the outsider has found the
incumbent’s ‘weak spot’. Suppose 6 € (0,1).

The timing of the game is as follows. The outsider must first decide whether to enter (E;)
or not (N;). (Here the ¢ indicates the type of the incumbent, since the outsider conditions
his choice on the incumbent’s type.) If he doesn’t enter, we assume that the game ends.
If he enters, on the other hand, the incumbent can choose either to fight (F') or acquiesce
(A). If he acquiesces, the game ends. If he fights, the game continues. In this case, the
outsider must decide whether to stay (S;) or leave (L;). (Again, i = w, s.)

Suppose the incumbent’s beliefs in his information set attach probability p to him being
the weak type. The payoffs are as indicated in Figure 1. The first payoff is that of the
incumbent, the second is that of the outsider.

(a) Indicate how many strategies each player has, and write up one such strategy for each
player. Is this a game of imperfect or incomplete information?

(b) Show that for certain values of 6, there is an equilibrium in which the outsider always
enters (plays E; for i = w, s) and the incumbent acquiesces (plays A). Be careful to
specify how the equilibrium depends on p and 6. (Hint: Use Bayes’ Rule to calculate
p given 0 and given that the outsider always enters.)

(c) Show that there is also an equilibrium in which the outsider never enters (he plays
N; for i = w, s). Be careful when you write up the equilibrium to specify p, and how
the equilibrium depends on €. (Hint: In this case, Bayes’ Rule does not apply to p.)

(d) Consider the equilibrium in (c) where the outsider never enters. Does it satisfy SR5
(‘strict domination’)?

Figure 1: Entry game

Nature

Outsider Outsider

Incumbent
(4,0)

Outsider Outsider

ZNotice that this is the ‘opposite’ of the entry game you saw in the lectures.



4. Consider a first-price sealed bid auction with two bidders, who have valuations v and wve,
respectively. For i = 1,2, these values are distributed independently uniformly with

v; ~u(l,2).
Thus, the values are private.

(a) Suppose player j uses the strategy b;(v;) = cv; + d. For i # j, show that conditional
on this strategy, the probability that ¢ wins when he bids b; is

b —d—
]P)(Z WlnS‘bZ) = %,

whenever ¢c+d < b; < 2c—+d.

(b) Using the result in (a), show that there is a symmetric Bayesian Nash Equilibrium
in linear strategies: b;(v;) = cv; +d, i = 1,2. Find ¢ and d.



